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Motivation: Why matrix-free? And why high-order?

Memory bandwidth (left) and FLOPs per dof (right) to apply a Jacobian
matrix, obtained from discretizations of a b-variable PDE system. Assembled

matrix vs matrix-free (exploits the tensor product structure by either storing at
q-points or computing on the fly)

[Courtesy: Jed Brown]
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Overview

For decades, high-order numerical methods have been considered
too expensive

A sparse matrix is no longer a good representation for high-order
operators. In particular, the Jacobian of a nonlinear operator is
known to rapidly lose sparsity as the order is increased

libCEED uses a matrix-free operator description, based on a purely
algebraic interface, where user only specifies action of weak form
operators

libCEED operator representation is optimal with respect to the
FLOPs needed for its evaluation, as well as the memory transfer
needed for operator evaluations (matvec)

Matrix-free operators that exploit tensor-product structures reduce
the work load from O(p6) (for sparse matrix) to O(p4), and memory
storage from O(p6) to O(p3)

We demonstrate the usage of libCEED, its integration with other
packages, and some PETSc application examples
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libCEED: the library within CEED (Center for Efficient Exascale Discretizations)

Primary target: high-order finite/spectral
element methods (FEM/SEM) exploiting
tensor-product structure

Open source (BSD-2 license) C library with
Fortran and Python interfaces

Releases: v0.1 (January 2018), v0.2 (March
2018), v.0.3 (September 2018), v0.4
(March 2019), v0.5 (September 2019),
v0.6 (March 2020)

For latest release:

Kolev T., Fischer P., Abdelfattah A., Ananthan S., Barra V., Beams N., Brown
J. et al., CEED ECP Milestone Report: Improve performance and capabilities
of CEED-enabled ECP applications on Summit/Sierra (2020, March 31st) DOI:
http://doi.org/10.5281/zenodo.3860804
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libCEED backends

  

CPU

GPU

Pure C

AVX

Pure C

LIBXSMM

Pure CUDA

OCCA

MAGMA

libCEED

MFEM

Nek5000

PETSc

...
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libCEED decomposition
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Point-wise QFunctions

User-defined
QFunctions:

−∇ · (κ(x)∇u)
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Point-wise QFunctions

User-defined
QFunctions:

−∇ · (κ(x)∇u)

or from libCEED’s
Gallery:

∇ · (∇u)

are point-wise
functions that do not
depend on element
resolution, topology,
or basis order
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libCEED’s Python interface

Classes:

Ceed Vector ElemRestriction

Basis QFunction Operator
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libCEED’s Python interface

Classes:

Ceed Vector ElemRestriction

Basis QFunction Operator

CeedVector’s data L999
9K

L9999K

numpy.array

numba.cuda.device array
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libCEED’s Python interface

Ceed ElemRestriction

Basis QFunction Operator

More details:

Barra V., Brown J., Thompson J., Dudouit Y., High-performance
operator evaluations with ease of use: libCEED’s Python in-
terface, Proceedings of the SciPy 2020 conference (2020, July
12) url: http://conference.scipy.org/proceedings/scipy2020/

libceed-paper.html
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Docs and tutorials

More info on our Python interface and interactive Jupyter notebook
tutorials can be found at:

https://hub.gke.mybinder.org/

user/ceed-libceed-tyuu81m6/lab

Our (very first!) user manual can be found at:

https://libceed.readthedocs.io
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Skylake

Performance on Skylake: AVX
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Figure: Skylake (2x Intel Xeon Platinum 8180M CPU 2.50GHz) with gcc-8 compiler. AVX
blocked backend: in (a) w.r.t. time ; in (b) w.r.t. problem size (q = P+ 2, P = p+ 1)
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Skylake

Performance on Skylake: libXSMM
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Figure: Skylake (2x Intel Xeon Platinum 8180M CPU 2.50GHz) with gcc-8 compiler. LIBXSMM
blocked backend: in (a) w.r.t. time; in (b) w.r.t. problem size (q = P+ 2, P = p+ 1)
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Noether

Performance on an AMD EPYC: libXSMM
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Noether (2x EPYC 7452), gcc-10
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Figure: 2x AMD EPYC 7452 (32-core) with gcc-10 compiler. LIBXSMM blocked backend
(q = P+ 2, P = p+ 1) with respect to time (left) and problem size (right)
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Noether

Preliminary GPU results: MFEM + libCEED

Results by Yohann Dudouit on Lassen (LLNL): CUDA-ref (left) and CUDA-gen
(right) backends performance for BP3 on a NVIDIA V100 GPU.
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A miniapp: a compressible Navier-Stokes solver
Compressible Navier-Stokes equations in conservative form:

∂ρ

∂t
+∇ ·U = 0 , (1a)

∂U

∂t
+∇ ·

(
U⊗U
ρ

+ PI3

)
+ ρgk = ∇ · σ , (1b)

∂E

∂t
+∇ ·

(
(E+ P)U

ρ

)
= ∇ · (u · σ+ k∇T) , (1c)

where σ = µ(∇u+ (∇u)T + λ(∇ · u)I3), and

(cp/cv − 1) (E−U ·U/(2ρ) − ρgz) = P
µ

g

k

λ

cp
cv

← pressure
← dynamic viscosity
← gravitational acceleration
← thermal conductivity
← Stokes hypothesis constant
← specific heat, constant pressure
← specific heat, constant volume
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Vector form

The system (1) can be rewritten in vector form

∂q

∂t
+∇ · F(q) = S(q) , (2)

for the state variables

q =

 ρ

U ≡ ρu
E ≡ ρe

 ← volume mass density
← momentum density
← energy density

(3)

where

F(q) =

 U

(U⊗U)/ρ+ PI3 − σ
(E+ P)U/ρ− (u · σ+ k∇T)

 ,

S(q) = −

 0

ρgk̂

0
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Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials
over non-uniformly spaced nodes, {xi}

p
i=0, the Legendre-Gauss-Lobatto (LGL)

points (roots of the pth-order Legendre polynomial Pp). We let

R3 ⊃ Ω =
⋃Ne

e=1Ωe, with Ne disjoint hexaedral elements.

The physical coordinates are x = (x,y, z) ∈ Ωe, while the reference coords are
X = (X, Y,Z) ∈ I = [−1, 1]3.

Define the discrete solution

qN(x, t)(e) =
P∑
k=1

ψk(x)q
(e)
k (4)

with P the number of nodes in the element e.

We use tensor-product bases ψkji = hi(X)hj(Y)hk(Z).
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Strong and weak formulations
The strong form of (3):∫

Ω

v

(
∂qN
∂t

+∇ · F(qN)
)
dΩ =

∫
Ω

vS(qN)dΩ , ∀v ∈ Vp (5)

with Vp = {v ∈ H1(Ωe) | v ∈ Pp(I), e = 1, . . . ,Ne}.
Weak form: ∫

Ω

v
∂qN
∂t

dΩ+

∫
Γ

vn̂ · F(qN)dΩ−

∫
Ω

∇v · F(qN)dΩ =∫
Ω

vS(qN)dΩ , ∀v ∈ Vp (6)

Explicit time discretization:

qn+1
N = qnN + ∆t

s∑
i=1

biki , (7)

adaptive Runge-Kutta-Fehlberg (RKF4-5)
method

Implicit time discretization:

f(qN) ≡ g(tn+1,qN, q̇N) = 0 ,

q̇N(qN) = αqN + zN (8)

α-method
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Application example: Density current

A cold air bubble drops by convection in a neutrally stratified
atmosphere.

Its initial condition is defined in terms of the Exner pressure, π(x, t), and
potential temperature, θ(x, t), that relate to the state variables via

ρ =
P0

(cp − cv)θ(x, t)
π(x, t)

cv
cp−cv , (9a)

e =cvθ(x, t)π(x, t) + u · u/2 + gz , (9b)

where P0 is the atmospheric pressure.

BCs: free slip for u, no-flux for mass and energy densities.
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Density current

order: p = 10, Ω = [0, 6000]2 m× [0, 3000] m, elem. resolution: 500 m, FEM

nodes: 893101

Valeria Barra Department of Computer Science, University of Colorado Boulder 18 / 24
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Recent Developments: Implicit time-stepping
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Recent Developments: PHASTA Integration

In collaboration with PHASTA (FastMath) we have worked on libCEED’s
integration.

[Ref: phasta.scigap.org]
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Recent Developments: Stabilization methods

We have added Streamline Upwind (SU) and Streamline
Upwind/Petrov-Galerkin (SUPG) stabilization methods to our

Navier-Stokes example.

For the advection case:

Not stabilized version. Stabilized version.

Valeria Barra Department of Computer Science, University of Colorado Boulder 21 / 24
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Recent Developments: BPs on the cubed-sphere

Converted BP1 (Mass operator) & BP3 (Poisson’s equation) on the
cubed-sphere as a prototype for shallow-water equations solver

∂u

∂t
= −(ω+ f)k̂× u−∇

(
1

2
|u|2 + g(h+ hs)

)
(10a)

∂h

∂t
= −∇ · (h0 + h)u (10b)

Valeria Barra Department of Computer Science, University of Colorado Boulder 22 / 24



Introduction Performance CFD Examples

Conclusions

We have showed libCEED’s performance
portability on several architectures, when
integrated with PETSc and MFEM

We have demonstrated the use of libCEED
with PETSc for the numerical high-order
solutions of

Full compressible Navier-Stokes equations

We have included implicit time-stepping and
SU/SUPG stabilization methods

Valeria Barra Department of Computer Science, University of Colorado Boulder 23 / 24
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Outlook

Ongoing and future work:

Algorithmic differentiation of Q-Functions

Ongoing work on CUDA and HIP
optimizations

Complete SWE solver on the cubed-sphere

We always welcome contributors and users
https://github.com/CEED/libCEED

Acknowledgements: Exascale Computing Project (17-SC-20-SC)

Thank you!
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libCEED backends

/cpu/self/ref/*: with * reference serial and blocked implementations

/cpu/self/avx/*: AVX (Advanced Vector Extensions instruction sets)

with * reference serial and blocked implementations

/cpu/self/xsmm/*: LIBXSMM (Intel library for small dense/sparse mat-multiply)

with * reference serial and blocked implementations

/*/occa: OCCA (just-in-time compilation)

with *: CPU, GPU, OpenMP (Open Multi-Processing: API),

OpenCL (framework for CPUs, GPUs, etc.)

/gpu/magma: CUDA MAGMA (dense Linear Algebra library for GPUs and

multicore architectures) kernels

/gpu/cuda/*: CUDA with *: ref (reference pure CUDA kernels),

reg (CUDA kernels using one thread per element),

shared, optimized CUDA kernels using shared memory

gen, optimized CUDA kernels using code generation

Same source code can call multiple CEEDs with different backends. On-device
operator implementation with unique interface

Valeria Barra Department of Computer Science, University of Colorado Boulder 24 / 24



Introduction Performance CFD Examples

Tensor contractions
Let {xi}

p
i=0 denote the LGL nodes with the corresponding interpolants

{ψpi }
p
i=0. Choose a quadrature rule with nodes {qQi }

Q
i=0 and weights

{wQi }. The basis evaluation, derivative, and integration matrices are

BQpij = ψpj (q
Q
i ), D

Qp
ij = ∂xψ

p
j (q

Q
i ), and WQ

ij = w
Q
i δij. In 3D:

B =B⊗ B⊗ B (11)

D0 =D⊗ B⊗ B (12)

D1 =B⊗D⊗ B (13)

D2 =B⊗ B⊗D (14)

W =W ⊗W ⊗W (15)

These tensor-product operations cost 2(p3Q+ p2Q2 + pQ3) and touch
only O(p3 +Q3) memory. In the spectral element method, when the
same LGL points are reused for quadrature (i.e., a collocated method
with Q = p+ 1), then B = I and D reduces to O(p4).

Valeria Barra Department of Computer Science, University of Colorado Boulder 24 / 24
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Geometry on the sphere

x

◦
x

q0

q1

q2

q3

Transform
◦
x = (

◦
x,

◦
y,

◦
z) on the sphere ↪→

x = (x,y, z) on the discrete surface ↪→
X = (X, Y) ∈ I = [−1, 1]2

∂
◦
x

∂X (3×2)
=
∂
◦
x

∂x (3×3)

∂x

∂X (3×2)

|J| =

∣∣∣∣∣col1
(
∂
◦
x

∂X

)
× col2

(
∂
◦
x

∂X

)∣∣∣∣∣
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