Performance

CFD Examples

# Performance-portable interfaces for applications in Scientific Computing

Valeria Barra<sup>1</sup>

collaborators: Jeremy Thompson<sup>1,2</sup>, Leila Ghaffari<sup>1</sup>, Jed Brown<sup>1</sup>,

Yohann Dudouit<sup>3</sup>

<sup>1</sup> Department of Computer Science, CU Boulder

<sup>2</sup> Department of Applied Math, CU Boulder

<sup>3</sup> Lawrence Livermore National Laboratory

(remotely for) SIAM-AN20

July 14, 2020







Performance

CFD Examples

University of Colorado

Boulder

#### Motivation: Why matrix-free? And why high-order?



Memory bandwidth (left) and FLOPs per dof (right) to apply a Jacobian matrix, obtained from discretizations of a b-variable PDE system. Assembled matrix vs matrix-free (exploits the tensor product structure by either storing at q-points or computing on the fly)

[Courtesy: Jed Brown]

| Introduction | Performance | CFD Examples |
|--------------|-------------|--------------|
| 0000000      | 0000        | 000000000000 |

#### Overview

- For decades, high-order numerical methods have been considered too expensive
- A sparse matrix is no longer a good representation for high-order operators. In particular, the Jacobian of a nonlinear operator is known to rapidly lose sparsity as the order is increased
- libCEED uses a matrix-free operator description, based on a purely algebraic interface, where user only specifies action of weak form operators
- libCEED operator representation is optimal with respect to the FLOPs needed for its evaluation, as well as the memory transfer needed for operator evaluations (matvec)
  - Matrix-free operators that exploit tensor-product structures reduce the work load from  $O(p^6)$  (for sparse matrix) to  $O(p^4)$ , and memory storage from  $O(p^6)$  to  $O(p^3)$
- We demonstrate the usage of libCEED, its integration with other packages, and some PETSc application examples

# libCEED: the library within CEED (Center for Efficient Exascale Discretizations)

- Primary target: high-order finite/spectral element methods (FEM/SEM) exploiting tensor-product structure
- Open source (BSD-2 license) C library with Fortran and Python interfaces
- Releases: v0.1 (January 2018), v0.2 (March 2018), v.0.3 (September 2018), v0.4 (March 2019), v0.5 (September 2019), v0.6 (March 2020)



For latest release:

Kolev T., Fischer P., Abdelfattah A., Ananthan S., **Barra V.**, Beams N., Brown J. et al., *CEED ECP Milestone Report: Improve performance and capabilities of CEED-enabled ECP applications on Summit/Sierra* (2020, March 31<sup>st</sup>) DOI: http://doi.org/10.5281/zenodo.3860804

University of Colorado Boulder

Performance

CFD Examples

#### libCEED backends



University of Colorado Boulder

## libCEED decomposition





#### $A = \mathcal{P}^T \mathcal{E}^T \mathbf{B}^T D \mathbf{B} \mathcal{E} \mathcal{P}$





Performance

CFD Examples

#### Point-wise QFunctions

User-defined QFunctions:

 $-\nabla\cdot(\kappa(x)\nabla u)$ 



| Introduction |
|--------------|
| 000000000    |

CFD Examples

#### Point-wise QFunctions

User-defined QFunctions:

 $-\nabla\cdot (\kappa(x)\nabla u)$ 

or from libCEED's Gallery:

 $\nabla\cdot(\nabla\mathfrak{u})$ 

are point-wise functions that do not depend on element resolution, topology, or basis order



Performance

CFD Examples

#### Point-wise QFunctions

User-defined QFunctions:

 $-\nabla\cdot (\kappa(x)\nabla u)$ 

or from libCEED's Gallery:

$$\nabla \cdot (\nabla \mathfrak{u})$$



are point-wise functions that do not depend on element resolution, topology, or basis order



| Introduction |
|--------------|
| 00000000     |

CFD Examples

### Point-wise QFunctions

User-defined QFunctions:

 $-\nabla \cdot (\kappa(\mathbf{x}) \nabla \mathbf{u})$ 

or from libCEED's Gallery:

 $\nabla \cdot (\nabla \mathfrak{u})$ 

are point-wise functions that do not depend on element resolution, topology, or basis order



Boulder

CFD Examples

#### libCEED's Python interface





Performance

CFD Examples

#### libCEED's Python interface





7/24

Performance

CFD Examples

#### libCEED's Python interface



#### More details:

Barra V., Brown J., Thompson J., Dudouit Y., *High-performance* operator evaluations with ease of use: *libCEED's Python in-*terface, Proceedings of the SciPy 2020 conference (2020, July 12) url: http://conference.scipy.org/proceedings/scipy2020/libceed-paper.html



CFD Examples

#### Docs and tutorials

More info on our Python interface and interactive Jupyter notebook tutorials can be found at:

https://hub.gke.mybinder.org/ user/ceed-libceed-tyuu81m6/lab



Our (very first!) user manual can be found at:

https://libceed.readthedocs.io





8/24

Skylake

Performance ●○○○ CFD Examples

# Performance on Skylake: AVX



Introduction 00000000 Skylake Performance ○●○○ CFD Examples

## Performance on Skylake: libXSMM



Performance

CFD Examples

#### Noether

#### Performance on an AMD EPYC: libXSMM

#### Noether (2x EPYC 7452), gcc-10



Figure: 2x AMD EPYC 7452 (32-core) with gcc-10 compiler. LIBXSMM blocked backend (q = P + 2, P = p + 1) with respect to time (left) and problem size (right)



Performance ○○○● CFD Examples

Noether

#### Preliminary GPU results: MFEM + libCEED



Results by Yohann Dudouit on Lassen (LLNL): CUDA-ref (left) and CUDA-gen (right) backends performance for BP3 on a NVIDIA V100 GPU.

University of Colorado Boulder

# A miniapp: a compressible Navier-Stokes solver

Compressible Navier-Stokes equations in conservative form:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{U} = 0$$
, (1a)

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \left( \frac{\mathbf{U} \otimes \mathbf{U}}{\rho} + P \mathbf{I}_3 \right) + \rho g \mathbf{k} = \nabla \cdot \boldsymbol{\sigma} \,, \tag{1b}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left( \frac{(E+P)\mathbf{U}}{\rho} \right) = \nabla \cdot (\mathbf{u} \cdot \boldsymbol{\sigma} + k \nabla T) , \qquad (1c)$$



Performance

CFD Examples

# A miniapp: a compressible Navier-Stokes solver

Compressible Navier-Stokes equations in conservative form:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{U} = 0$$
, (1a)

$$\frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \left( \frac{\boldsymbol{U} \otimes \boldsymbol{U}}{\rho} + P \boldsymbol{I}_3 \right) + \rho g \boldsymbol{k} = \nabla \cdot \boldsymbol{\sigma} \,, \tag{1b} \label{eq:eq:eq_alpha}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left( \frac{(E+P)\mathbf{U}}{\rho} \right) = \nabla \cdot \left( \mathbf{u} \cdot \boldsymbol{\sigma} + k \nabla T \right) \,, \tag{1c}$$

where 
$$\boldsymbol{\sigma} = \boldsymbol{\mu} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^\mathsf{T} + \boldsymbol{\lambda} (\nabla \cdot \boldsymbol{u}) \mathbf{I}_3) \text{, and}$$



Introduction

## A miniapp: a compressible Navier-Stokes solver

Compressible Navier-Stokes equations in conservative form:

$$rac{\partial 
ho}{\partial t} + 
abla \cdot \mathbf{U} = \mathbf{0}$$
 , (1a)

$$\frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \left( \frac{\boldsymbol{U} \otimes \boldsymbol{U}}{\rho} + P \boldsymbol{I}_3 \right) + \rho g \boldsymbol{k} = \nabla \cdot \boldsymbol{\sigma} \,, \tag{1b} \label{eq:eq:eq_alpha}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left( \frac{(E+P)\mathbf{U}}{\rho} \right) = \nabla \cdot \left( \mathbf{u} \cdot \boldsymbol{\sigma} + k \nabla T \right) \,, \tag{1c}$$

where 
$$\boldsymbol{\sigma} = \boldsymbol{\mu} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^\mathsf{T} + \boldsymbol{\lambda} (\nabla \cdot \boldsymbol{u}) \mathbf{I}_3) \text{, and}$$

 $(c_{p}/c_{\nu}-1)\left(\mathsf{E}-\mathbf{U}\cdot\mathbf{U}/(2\rho)-\rho gz\right)=\mathsf{P}\quad\leftarrow \ \mathrm{pressure}$ 

- $\mu \leftarrow dynamic viscosity$
- $g \hspace{.1in} \leftarrow \hspace{.1in} \operatorname{gravitational} \hspace{.1in} \operatorname{acceleration}$
- $k \ \leftarrow \ {\rm thermal \ conductivity}$
- $\lambda \ \ \leftarrow \ \, {\rm Stokes \ hypothesis \ constant}$
- $c_p \hspace{0.1in} \leftarrow \hspace{0.1in} \mathrm{specific \ heat, \ constant \ pressure}$
- $c_\nu \quad \leftarrow \ {\rm specific \ heat, \ constant \ volume}$



| ntroduction | Performance | CFD Examples |
|-------------|-------------|--------------|
| 0000000     | 0000        | 00000000000  |

### Vector form

The system (1) can be rewritten in vector form

$$\frac{\partial \mathbf{q}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{q}) = \mathbf{S}(\mathbf{q}), \qquad (2)$$

for the state variables

$$\begin{array}{ll} q = & \left( \begin{array}{c} \rho \\ \mathbf{U} \equiv \rho \mathbf{u} \\ \mathbf{E} \equiv \rho e \end{array} \right) \begin{array}{l} \leftarrow \mbox{ volume mass density} \\ \leftarrow \mbox{ momentum density} \\ \leftarrow \mbox{ energy density} \end{array}$$



(3)

| Introduction | Performance | CFD Examples |
|--------------|-------------|--------------|
| 0000000      | 0000        | 00000000000  |

#### Vector form

The system (1) can be rewritten in vector form

$$\frac{\partial \mathbf{q}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{q}) = \mathbf{S}(\mathbf{q}), \qquad (2)$$

 $\begin{array}{ll} \mbox{for the state variables} \\ q = & \left( \begin{array}{c} \rho \\ u \equiv \rho u \\ E \equiv \rho e \end{array} \right) \begin{array}{l} \leftarrow \mbox{ volume mass density} \\ \leftarrow \mbox{ momentum density} \\ \leftarrow \mbox{ energy density} \end{array} \end{array}$ 

(3)

where

$$\begin{split} F(q) = & \left( \begin{array}{c} U \\ (U \otimes U)/\rho + PI_3 - \sigma \\ (E+P)U/\rho - (u \cdot \sigma + k \nabla T) \end{array} \right) \\ S(q) = & - \left( \begin{array}{c} 0 \\ \rho g \hat{k} \\ 0 \end{array} \right) \end{split}$$

University of Colorado Boulder

,

| ntroduction |  |
|-------------|--|
| 0000000     |  |

CFD Examples

#### Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials over non-uniformly spaced nodes,  $\{x_i\}_{i=0}^p$ , the Legendre-Gauss-Lobatto (LGL) points (roots of the p<sup>th</sup>-order Legendre polynomial P<sub>p</sub>). We let  $\mathbb{R}^3 \supset \Omega = \bigcup_{e=1}^{N_e} \Omega_e$ , with N<sub>e</sub> disjoint hexaedral elements.

The physical coordinates are  $\mathbf{x}=(x,y,z)\in\Omega_e,$  while the reference coords are  $\mathbf{X}=(X,Y,Z)\in\mathbf{I}=[-1,1]^3.$ 



Performance

CFD Examples

#### Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials over non-uniformly spaced nodes,  $\{x_i\}_{i=0}^p$ , the Legendre-Gauss-Lobatto (LGL) points (roots of the p<sup>th</sup>-order Legendre polynomial P<sub>p</sub>). We let  $\mathbb{R}^3 \supset \Omega = \bigcup_{e=1}^{N_e} \Omega_e$ , with N<sub>e</sub> disjoint hexaedral elements.

The physical coordinates are  $x=(x,y,z)\in\Omega_e,$  while the reference coords are  $X=(X,Y,Z)\in I=[-1,1]^3.$ 

Define the discrete solution

$$\mathbf{q}_{N}(\mathbf{x},t)^{(e)} = \sum_{k=1}^{P} \psi_{k}(\mathbf{x}) \mathbf{q}_{k}^{(e)}$$
 (4)

with P the number of nodes in the element e.

We use tensor-product bases  $\psi_{kji} = h_i(X)h_j(Y)h_k(Z)$ .



## Strong and weak formulations

The strong form of (3):

$$\int_{\Omega} \nu \left( \frac{\partial \mathbf{q}_{N}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{q}_{N}) \right) \, d\Omega = \int_{\Omega} \nu \mathbf{S}(\mathbf{q}_{N}) \, d\Omega \, , \, \forall \nu \in \mathcal{V}_{p} \tag{5}$$

with  $\mathcal{V}_p=\{\nu\in H^1(\Omega_e)\,|\,\nu\in P_p(I), e=1,\ldots,N_e\}.$  Weak form:

$$\int_{\Omega} \nu \frac{\partial \mathbf{q}_{N}}{\partial t} \, d\Omega + \int_{\Gamma} \nu \widehat{\mathbf{n}} \cdot \mathbf{F}(\mathbf{q}_{N}) \, d\Omega - \int_{\Omega} \nabla \nu \cdot \mathbf{F}(\mathbf{q}_{N}) \, d\Omega =$$

$$\int_{\Omega} \nu \mathbf{S}(\mathbf{q}_{N}) \, d\Omega, \, \forall \nu \in \mathcal{V}_{p}$$
(6)



#### Strong and weak formulations

The strong form of (3):

$$\int_{\Omega} \nu \left( \frac{\partial \mathbf{q}_{N}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{q}_{N}) \right) \, d\Omega = \int_{\Omega} \nu \mathbf{S}(\mathbf{q}_{N}) \, d\Omega \, , \, \forall \nu \in \mathcal{V}_{p} \tag{5}$$

with  $\mathcal{V}_p=\{\nu\in H^1(\Omega_e)\,|\,\nu\in P_p(I), e=1,\ldots,N_e\}.$  Weak form:

$$\int_{\Omega} \nu \frac{\partial \mathbf{q}_{N}}{\partial t} \, d\Omega + \int_{\Gamma} \nu \widehat{\mathbf{n}} \cdot \mathbf{F}(\mathbf{q}_{N}) \, d\Omega - \int_{\Omega} \nabla \nu \cdot \mathbf{F}(\mathbf{q}_{N}) \, d\Omega = \int_{\Omega} \nu \mathbf{S}(\mathbf{q}_{N}) \, d\Omega, \, \forall \nu \in \mathcal{V}_{p}$$
(6)

Explicit time discretization:

$$q_N^{n+1} = q_N^n + \Delta t \sum_{i=1}^s b_i k_i$$
, (7)

adaptive Runge-Kutta-Fehlberg (RKF4-5) method

Implicit time discretization:

$$\begin{split} f(\boldsymbol{q}_{N}) &\equiv g(t^{n+1}, \boldsymbol{q}_{N}, \dot{\boldsymbol{q}}_{N}) = 0, \\ \dot{\boldsymbol{q}}_{N}(\boldsymbol{q}_{N}) &= \alpha \boldsymbol{q}_{N} + \boldsymbol{z}_{N} \end{split} \tag{8}$$

 $\alpha$ -method

University of Colorado Boulder

CFD Examples

#### Application example: Density current

# A cold air bubble drops by convection in a neutrally stratified atmosphere.

Its initial condition is defined in terms of the Exner pressure,  $\pi(x, t)$ , and potential temperature,  $\theta(x, t)$ , that relate to the state variables via

$$\rho = \frac{P_0}{(c_p - c_\nu)\theta(\mathbf{x}, t)} \pi(\mathbf{x}, t)^{\frac{c_\nu}{c_p - c_\nu}}, \qquad (9a)$$

$$e = c_{\nu}\theta(\mathbf{x}, t)\pi(\mathbf{x}, t) + \mathbf{u} \cdot \mathbf{u}/2 + gz, \qquad (9b)$$

where  $P_0$  is the atmospheric pressure.

BCs: free slip for u, no-flux for mass and energy densities.



| Intro | duc | tion |
|-------|-----|------|
| 000   | 000 | 0000 |

CFD Examples

#### Density current

# order: p= 10, $\Omega=[0,6000]^2~m\times[0,3000]~m,$ elem. resolution: 500 m, FEM nodes: 893101



University of Colorado Boulder

Performance

CFD Examples

#### Recent Developments: Implicit time-stepping





CFD Examples

## Recent Developments: PHASTA Integration

In collaboration with PHASTA (FastMath) we have worked on libCEED's integration.



[Ref: phasta.scigap.org]



20 / 24

CFD Examples

#### Recent Developments: Stabilization methods

We have added Streamline Upwind (SU) and Streamline Upwind/Petrov-Galerkin (SUPG) stabilization methods to our Navier-Stokes example.

For the advection case:

Not stabilized version.

Stabilized version.



Performance

CFD Examples

#### Recent Developments: BPs on the cubed-sphere

Converted BP1 (Mass operator) & BP3 (Poisson's equation) on the cubed-sphere as a prototype for shallow-water equations solver

$$\frac{\partial \mathbf{u}}{\partial t} = -(\omega + f)\hat{\mathbf{k}} \times \mathbf{u} - \nabla \left(\frac{1}{2}|\mathbf{u}|^2 + g(\mathbf{h} + \mathbf{h}_s)\right)$$
(10a)  
$$\frac{\partial \mathbf{h}}{\partial t} = -\nabla \cdot (\mathbf{h}_0 + \mathbf{h})\mathbf{u}$$
(10b)  
$$(10b)$$

CFD Examples

### Conclusions

- We have showed libCEED's performance portability on several architectures, when integrated with PETSc and MFEM
- We have demonstrated the use of libCEED with PETSc for the numerical high-order solutions of
  - Full compressible Navier-Stokes equations
- We have included implicit time-stepping and SU/SUPG stabilization methods







### Outlook

Ongoing and future work:

- Algorithmic differentiation of Q-Functions
- Ongoing work on CUDA and HIP optimizations
- Complete SWE solver on the cubed-sphere
- We always welcome contributors and users https://github.com/CEED/libCEED





## Outlook

Ongoing and future work:

- Algorithmic differentiation of Q-Functions
- Ongoing work on CUDA and HIP optimizations
- Complete SWE solver on the cubed-sphere
- We always welcome contributors and users https://github.com/CEED/libCEED



Acknowledgements: Exascale Computing Project (17-SC-20-SC)

# Thank you!



CFD Examples

# libCEED backends

| /cpu/self/ref/*:  | with * reference serial and blocked implementations         |
|-------------------|-------------------------------------------------------------|
| /cpu/self/avx/*:  | AVX (Advanced Vector Extensions instruction sets)           |
|                   | with * reference serial and blocked implementations         |
| /cpu/self/xsmm/*: | LIBXSMM (Intel library for small dense/sparse mat-multiply) |
|                   | with * reference serial and blocked implementations         |
| /*/occa:          | OCCA (just-in-time compilation)                             |
|                   | with *: CPU, GPU, OpenMP (Open Multi-Processing: API),      |
|                   | OpenCL (framework for CPUs, GPUs, etc.)                     |
| /gpu/magma:       | CUDA MAGMA (dense Linear Algebra library for GPUs and       |
|                   | multicore architectures) kernels                            |
| /gpu/cuda/*:      | CUDA with *: ref (reference pure CUDA kernels),             |
|                   | reg (CUDA kernels using one thread per element),            |
|                   | shared, optimized CUDA kernels using shared memory          |
|                   | gen, optimized CUDA kernels using code generation           |

Same source code can call multiple CEEDs with different backends. On-device operator implementation with unique interface



24 / 24

Boulder

#### Tensor contractions

Let  $\{x_i\}_{i=0}^p$  denote the LGL nodes with the corresponding interpolants  $\{\psi_i^p\}_{i=0}^p$ . Choose a quadrature rule with nodes  $\{q_i^Q\}_{i=0}^Q$  and weights  $\{w_i^Q\}$ . The basis evaluation, derivative, and integration matrices are  $B_{ij}^{Qp} = \psi_j^p(q_i^Q)$ ,  $D_{ij}^{Qp} = \vartheta_x \psi_j^p(q_i^Q)$ , and  $W_{ij}^Q = w_i^Q \delta_{ij}$ . In 3D:

| $\mathbf{D} = \mathbf{D} \lor \lor \mathbf{D} \lor \lor \mathbf{D}$ | $\mathbf{B} = \mathbf{B} \otimes$ | $B \otimes B$ | (11) |
|---------------------------------------------------------------------|-----------------------------------|---------------|------|
|---------------------------------------------------------------------|-----------------------------------|---------------|------|

$$\mathbf{D}_0 = \mathbf{D} \otimes \mathbf{B} \otimes \mathbf{B} \tag{12}$$

$$\mathbf{D}_1 = \mathbf{B} \otimes \mathbf{D} \otimes \mathbf{B} \tag{13}$$

$$\mathbf{D}_2 = \mathbf{B} \otimes \mathbf{B} \otimes \mathbf{D} \tag{14}$$

$$\mathbf{W} = \mathcal{W} \otimes \mathcal{W} \otimes \mathcal{W} \tag{15}$$

These tensor-product operations cost  $2(p^3Q + p^2Q^2 + pQ^3)$  and touch only  $O(p^3 + Q^3)$  memory. In the spectral element method, when the same LGL points are reused for quadrature (i.e., a collocated method with Q = p + 1), then  $\mathbf{B} = \mathbf{I}$  and  $\mathbf{D}$  reduces to  $O(p^4)$ .

Performance

CFD Examples

#### Geometry on the sphere



Transform  $\overset{\circ}{\mathbf{x}} = (\overset{\circ}{\mathbf{x}}, \overset{\circ}{\mathbf{y}}, \overset{\circ}{z})$  on the sphere  $\hookrightarrow$  $\mathbf{x} = (x, y, z)$  on the discrete surface  $\hookrightarrow$  $\mathbf{X} = (X, Y) \in \mathbf{I} = [-1, 1]^2$ 

$$\frac{\partial \overset{\circ}{\mathbf{x}}}{\partial \mathbf{X}}_{(3\times 2)} = \frac{\partial \overset{\circ}{\mathbf{x}}}{\partial \mathbf{x}}_{(3\times 3)} \frac{\partial \mathbf{x}}{\partial \mathbf{X}}_{(3\times 2)}$$

$$|\mathbf{J}| = \left| \operatorname{col}_1 \left( \frac{\partial \overset{\circ}{\mathbf{x}}}{\partial \mathbf{X}} \right) \times \operatorname{col}_2 \left( \frac{\partial \overset{\circ}{\mathbf{x}}}{\partial \mathbf{X}} \right) \right|$$

