Introduction	Governing Equations	Numerical Results	Conclusions	

Wetting and Dewetting of Thin Viscoelastic Drops

Valeria Barra, Shahriar Afkhami, Lou Kondic

Department of Mathematical Sciences, NJIT

July, 15th 2016

Introduction	Governing Equations	Numerical Results	Conclusions

Outline

- Introduction
- Governing equations
- Numerical results:
 - Spreading and Receding Viscoelastic Drops vs Newtonian ones
 - Dynamic Contact Angle Analysis
- Conclusions

Introduction

Applications:

- Food Industry: ketchup, custard, starch suspensions.
- Chemical and Pharmaceutical Industries: toothpaste, shampoo.
- Coating processes in Material Sciences: glue.
- Biomedical Industry: blood, mucus, saliva.
- Green Energy materials: solar cells.

www.foodproductiondaily.com MIT research

Governing Equations

Conservation laws:

 ρ constant density $\Rightarrow \nabla \cdot \mathbf{u} = 0$

$$\rho \frac{d \mathbf{u}}{d t} = - \nabla (p + \Pi) + \nabla \cdot \underline{\underline{\tau}}$$
 ,

where p is the hydrostatic pressure, Π is the pressure induced by body forces: van-der-Waals- type attraction/repulsion forces, $\underline{\underline{\tau}}$ the stress tensor. Jeffreys' model:

$$\underline{\underline{\tau}} + \frac{\lambda_1}{\partial_t} \underline{\underline{\tau}} = \eta(\underline{\dot{\underline{\gamma}}} + \frac{\lambda_2}{\partial_t} \underline{\dot{\underline{\gamma}}})$$

 λ_1 relaxation time, λ_2 retardation time: $\lambda_2 = \lambda_1 \frac{\eta_s}{\eta_s + \eta_p} \Rightarrow \lambda_1 \ge \lambda_2$ η_s , η_p viscosity of Newtonian solvent and polymeric solute

Introduction	Governing Equations	Numerical Results	Conclusions	
	00000			

Schematic

Thin-film approximation

Figure: Schematic of the fluid interface and boundary conditions. Fluid 1 is the viscoelastic liquid, Fluid 2 an ambient (passive) gas.

Introduction	Governing Equations	Numerical Results	Conclusions
	00000		

Nondimensionalization

Scalings:

$$\begin{split} & x = Lx^* , \ (y,h,h_\star,b) = H(y^*,h^*,h_\star^*,b^*) , \ (p,\Pi) = P(p^*,\Pi^*) , \\ & u = Uu^* , \ \nu = \epsilon U\nu^* , \ (t,\lambda_1,\lambda_2) = T(t^*,\lambda_1^*,\lambda_2^*) , \ \sigma = \frac{U\eta}{\epsilon^3}\sigma^* , \end{split}$$

$$\left(\begin{array}{cc} \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22} \end{array} \right) = \frac{\eta}{T} \left(\begin{array}{cc} \tau_{11}^* & \frac{\tau_{12}^*}{\epsilon} \\ \frac{\tau_{21}^*}{\epsilon} & \tau_{22}^* \end{array} \right) \,,$$

where $H/L = \varepsilon \ll 1$ is the small parameter. Pressure is scaled with $P = \eta/(T\varepsilon^2)$, and time with T = L/U. We note that the Weissenberg number $Wi = \lambda_1 U/L = \lambda_1/T = \lambda_1^*$

Governing Equations

Long-wave approximation:

$$(1 + \lambda_2 \partial_t)h_t + \frac{\partial}{\partial x} \left\{ (\lambda_2 - \lambda_1) \left(\frac{h^2}{2} \mathbf{Q} - h \mathbf{R} \right) h_t + \left[(1 + \lambda_1 \partial_t) \frac{h^3}{3} + (1 + \lambda_2 \partial_t) b h^2 \right] \frac{\partial}{\partial x} \left(\frac{\partial^2 h}{\partial x^2} + \Pi(h) \right) \right\} = 0,$$

$$\mathbf{Q} + \lambda_2 \mathbf{Q}_t = -\frac{\partial}{\partial x} \left(\frac{\partial^2 h}{\partial x} + \Pi(h) \right)$$

$$\mathbf{R} + \lambda_2 \mathbf{Q}_t = -\hbar \frac{\partial}{\partial x} \left(\frac{\partial^2 h}{\partial x^2} + \Pi(h) \right),$$
$$\mathbf{R} + \lambda_2 \mathbf{R}_t = -\hbar \frac{\partial}{\partial x} \left(\frac{\partial^2 h}{\partial x^2} + \Pi(h) \right).$$

disjoining pressure: $\Pi(h) = \frac{\sigma(1-\cos\theta_e)}{Mh_\star} \left[\left(\frac{h_\star}{h}\right)^n - \left(\frac{h_\star}{h}\right)^m \right],$ θ_e contact angle, M = (n-m)/[(m-1)(n-1)], (n > m > 1)

Introduction	Governing Equations	Numerical Results	Conclusions
	00000		

Schematic: Circular Cap

Figure: Schematic of the planar cap.

Spreading Drops: Comparison Movie

Viscoelastic drop $\lambda_1 = 15$, $\lambda_2 = 0.01$ (red solid curve) versus Newtonian drop with $\lambda_1 = \lambda_2 = 0$ (blue dotted curve).

NJIT

o oocoo oooooo	Introduction	Governing Equations	Numerical Results	Conclusions
	0	00000	00000000	

Spreading Drops: A close-up

Viscoelastic drop with $\lambda_1 = 15$, $\lambda_2 = 0.01$ (red solid curve) versus Newtonian drop with $\lambda_1 = \lambda_2 = 0$ (blue dotted curve). Precursor film thickness $h_{\star} = 0.01$

Introduction	Governing Equations	Numerical Results	Conclusions
		00000000	

Spreading Drops: A close-up

Viscoelastic drop with $\lambda_1 = 15$, $\lambda_2 = 0.01$ (red solid curve) versus Newtonian drop with $\lambda_1 = \lambda_2 = 0$ (blue dotted curve). Precursor film thickness $h_{\star} = 0.005$

[M. A. Spaid, G. M. Homsy, Stability of Newtonian and viscoelastic dynamic contact lines, Phys. Fluids 8 (1996) 460–478.]

Introduction	Governing Equations	Numerical Results	Conclusions	
0	00000	00000000		(

Spreading Drops - Contact Line Analysis

NJIT

Valeria Barra (NJIT)

Spreading Drops - Dynamic C.A. Analysis

General Cox-Voinov law: $\theta_D^3 - \theta_e^3 \propto C a^{\beta}$

NJIT

Receding Drops: Comparison Movie

Viscoelastic drop $\lambda_1 = 15$, $\lambda_2 = 0.01$ (red solid curve) versus Newtonian drop with $\lambda_1 = \lambda_2 = 0$ (blue dotted curve).

Introduction	Governing Equations	Numerical Results	Conclusions
		000000000	

Receding Drops: A close-up

Viscoelastic drop with $\lambda_1 = 15$, $\lambda_2 = 0.01$ (red solid curve) versus Newtonian drop with $\lambda_1 = \lambda_2 = 0$ (blue dotted curve). Precursor film thickness $h_* = 0.005$

Receding Drops - Contact Line Analysis

NJIT

Valeria Barra (NJIT)

Receding Drops - Dynamic C.A. Analysis

General Cox-Voinov law: $\theta_D^3 - \theta_e^3 \propto C a^{\beta}$

NJIT

Introduction	Governing Equations	Numerical Results	Conclusions

Conclusions

- Viscoelasticity enhances spreading and slows down retraction
- \bullet Verified that viscoelastic effects more pronounced with thinner precursor thickness h_{\star}
- Cox-Voinox scaling law does not hold for viscoelastic fluids (lower for spreading, higher for receding)

Thank you!

