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Introduction

Applications:
@ Food Industry: ketchup,
custard, starch suspensions.
@ Chemical and
Pharmaceutical Industries:
toothpaste, shampoo.

@ Coating processes in
Material Sciences: glue.

@ Biomedical Industry: blood,

www.foodproductiondaily.com
mucus, saliva. MIT research

@ Green Energy materials:
solar cells.
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Governing Equations
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Governing Equations

Conservation laws:
p constant density = V-u =20

p% =—V(p+MM+V-1,
where p is the hydrostatic pressure, TT is the pressure induced by
body forces: van-der-Waals- type attraction/repulsion forces, T the
stress tensor. Jeffreys' model: B

T+M0T=n(Y +A20:¥)

A1 relaxation time, Ao retardation time: Ay = Aj=135— = A; > Ay

Ns+Mp
NLLT

Ms, Np Viscosity of Newtonian solvent and polymeric solute
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Schematic

Thin-film approximation

Fluid 2

t t-(r—(@+I)) -n=0

v=20 U= —T12
n

Figure: Schematic of the fluid interface and boundary conditions. Fluid 1
is the viscoelastic liquid, Fluid 2 an ambient (passive) gas.
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Nondimensionalization

Scalings:

x =Lx", (y,h hy,b) = H(y* h* hi,b*), (p,TT) =P(p*,TT"),

u
w=Uu, v=elv, (A he) = T(E AL ), 0= —30,

3
x  Th
(Tn T12>_T1 11
= 3 ¢ ,
To1 T2 T\ 2 1,
where H/L = ¢ < 1 is the small parameter. Pressure is scaled with

P =1/(Te?), and time with T = L/U. We note that the
Weissenberg number Wi = A U/L =A1/T =A]
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Governing Equations

Long-wave approximation:

0x

3 2
+ [(1 + Alat)% F1+ Azat)bhﬂ 9 (ah + ﬂ(h)) } —0,

2
u+Aﬁam+a{mzh)C;QhR)m

ox \ 0x2?

Q+0Q = @$+ﬂ(0
R+ MR, :—hax (3 + ().

disjoining pressure: TT(h) = (l;vf}?fe [(}%) ( ) }
0. contact angle, M = (n—m)/[(m —1)]
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Schematic: Circular Cap

T h,

Figure: Schematic of the planar cap.
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Numerical Results
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Spreading Drops: Comparison Movie

Viscoelastic drop Ay = 15, A, = 0.01 (red solid curve) versus
Newtonian drop with A; = Ay = 0 (blue dotted curve).
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Spreading Drops: A close-up

(a) (b) ()
t=10 t =50 t =100

Viscoelastic drop with A; = 15, Ay = 0.01 (red solid curve) versus
Newtonian drop with A; = Ay = 0 (blue dotted curve).
Precursor film thickness h, = 0.01
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Spreading Drops: A close-up

-
/

s oo B

(a) (b) (©)
t=10 =

Viscoelastic drop with A; = 15, A, = 0.01 (red solid curve) versus
Newtonian drop with A; = A, = 0 (blue dotted curve).
Precursor film thickness h, = 0.005

[M. A. Spaid, G. M. Homsy, Stability of Newtonian and viscoelastic dynamic contact lines,
Phys. Fluids 8 (1996) 460-478.]
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Spreading Drops - Contact Line Analysis
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Spreading Drops - Dynamic C.A. Analysis

General Cox-Voinov law: 83 — 03 o« CaP
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Receding Drops: Comparison Movie

Viscoelastic drop Ay = 15, A, = 0.01 (red solid curve) versus
Newtonian drop with A; = Ay = 0 (blue dotted curve).
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Receding Drops: A close-up

(a (b) c
t =100 t = 350 t = 1000

Viscoelastic drop with A; =15, A, = 0.01 (red solid curve) versus
Newtonian drop with A; = A, = 0 (blue dotted curve).
Precursor film thickness h, = 0.005
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Receding Drops - Contact Line Analysis
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Receding Drops - Dynamic C.A. Analysis

General Cox-Voinov law: 83 — 03 o« CaP
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Conclusions

@ Viscoelasticity enhances spreading and slows down retraction

@ Verified that viscoelastic effects more pronounced with thinner
precursor thickness h,

@ Cox-Voinox scaling law does not hold for viscoelastic fluids
(lower for spreading, higher for receding)

Thank you!
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