
Emergent nonlinearities and fast solvers for fluids from small to
global scales

Valeria Barra, Ph.D.
Research Software Engineer

valeriabarra.org

California Institute of Technology

https://valeriabarra.org/


Overview

1 Interfacial flows

2 libCEED

3 CliMA
ClimaCore.jl
Examples for Climate Applications

4 Conclusions

Valeria Barra, Ph.D. (Caltech) 1 / 45



PhD research: Viscoelastic fluids
PhD in Applied Math from NJIT on numerical simulations of thin films (long-waves) of

viscoelastic fluids

Viscoelastic materials:
hysteresis:
loop in stress-strain rate curve
stress relaxation:
constant ε⇒ decreasing σ

creep:
constant σ ⇒ increasing ε
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Mechanical system analogs
Hookean: elastic solids

σij = 2Gεij
G shear elastic modulus

G

Newtonian: viscous fluids
σij = 2ηε̇ij
η dynamic (shear) viscosity

η

Kelvin-Voigt: linear viscoelastic solids
σij = 2Gεij + 2ηε̇ij

η

G

Maxwell: linear viscoelastic fluids
σij + λ1∂tσij = 2ηε̇ij
λ1 relaxation time, s. t. λ1 = η/G .

η
G
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Mechanical system analog for Jeffreys
Jeffreys Model: linear viscoelastic fluids
σij + λ1∂tσij = 2η (ε̇ij + λ2∂t ε̇ij) ,

with λ2 = λ1
ηs

ηs+ηp , and η = ηs + ηp ⇒ λ1 ≥ λ2. With ηs and ηp viscosity of
Newtonian solvent and polymeric solute, respectively.

λ1 relaxation time, λ2 retardation time.

G
ηp

ηs
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Governing equations

Conservation laws:

ρ (∂tu + u · ∇u) = −∇(p + Π) +∇ · σ + Fb , (1)
∇ · u = 0 , (2)

where, in 2D, u = (u(x , y , t), v(x , y , t)), is the vector velocity field, ∇ = (∂x , ∂y ),
p is the pressure, Π is the disjoining pressure due to the van-der-Waals interaction
(attraction/repulsion) force, and Fb = (ρg sinα,−ρg cosα) body force.

Jeffreys’ model:
σ + λ1∂tσ = 2η(ε̇ + λ2∂t ε̇)
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Schematic

Setup and boundary conditions:
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Figure: Schematic of the fluid interface and boundary conditions.

Kinematic BC: Df /Dt = ft + u · ∇f = 0, with f (x , y , t) = y − h(x , t).
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Nondimensionalization

Scalings:

x = Lx∗ , (y , h, h?, b) = H(y∗, h∗, h∗?, b∗) , (p,Π) = P(p∗,Π∗) ,

u = Vu∗ , v = εVv∗ , (t, λ1, λ2) = T (t∗, λ∗1, λ∗2) , γ = V η
ε3
γ∗ ,

(
σ11 σ12
σ21 σ22

)
= η

T

(
σ∗11

σ∗
12
ε

σ∗
21
ε σ∗22

)
,

where H/L = ε� 1 is the small parameter. Pressure is scaled with P = η/(Tε2), and
time with T = L/V .
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Dimensionless governing equations
Long-wave approximation in two spatial dimensions:

(1 + λ2∂t)ht + ∂

∂x

{
(λ2 − λ1)

(
h2
2 Q − hR

)
ht

+
[

(1 + λ1∂t)
h3
3 + (1 + λ2∂t)bh2

]
∂

∂x

(
∂2h
∂x2 + Π(h)

)}
= 0 ,

Q + λ2Qt = − ∂
∂x

(
∂2h
∂x2 + Π(h)

)
,

R + λ2Rt = −h ∂
∂x

(
∂2h
∂x2 + Π(h)

)
.

disjoining pressure: Π(h) = γ(1−cosθe)
Mh?

[( h?

h
)n − ( h?

h
)m],

θe contact angle, M = 0.5, (n = 3,m = 2), h? precursor film thickness.

Jeffreys’ constitutive law:

σ + λ1∂tσ = 2η(ε̇ + λ2∂t ε̇)
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Dewetting film

A viscoelastic dewetting film exhibits secondary satellite droplets in the dewetting
region that viscous films do not exhibit.
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Dewetting films with slippage and on an inverted plane

A higher slippage with the substrate suppresses
formation of satellite

droplets

Rayleigh-Taylor instabilities
in the case of an inverted plane
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Spreading and receding drops

The viscoelastic drop spreads faster and recedes slower compared to the Newtonian one
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Membranes
Shear and extensional free-boundary flows of viscoelastic membranes

Linear finite elements with plane stress formulation. Different constitutive models
considered: elastic, viscous, viscoelastic (Maxwell)
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Other projects: Computer Graphics applications

Developed 2 proprietary libraries in C++ for viscous fluid simulations on curved
surfaces

A vorticity-formulation 2D Navier-Stokes solver with fluid-structure interactions, using
Discrete Exterior Calculus (DEC) in a finite volume discretization
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Other projects (cont’ed)

A thin film (long-wave) solver on curved surfaces, with arbitrary topology and element
shapes

Prototyped a plugin for the 3D graphics software package Houdini
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Fast algebra for high-order element-based discretizations: libCEED
Postdoc project supervised by Jed Brown at
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libCEED Overview
High-order methods have been considered too expensive for decades because relied
on sparse matrices assembly, which results in O(pd) storage and O(p2d) compute
per degree of freedom (DoF) in d dimensions, for basis polynomial order p
On the other hand, optimized spectral element implementations can achieve O(1)
storage and O(p) compute per DoF

[Courtesy: Jed Brown]

[https://github.com/CEED/libCEED/]
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libCEED: the Code for Efficient Extensible Discretization
libCEED uses a matrix-free operator description,
based on a purely algebraic interface, where user
only specifies the action of weak form operators
Primary target: high-order finite/spectral element
methods (FEM/SEM) exploiting tensor-product
structure
Open-source (BSD-2 license) C library with
Fortran, Python, Julia and Rust interfaces
libCEED is light-weight and performance-portable
via run-time selection of specialized
implementations (backends) optimized for CPUs
and GPUs
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Performance
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Application examples
Integration of libCEED with the Portable, Extensible Toolkit for Scientific Computation

(PETSc) for examples in fluids and solid mechanics

DNS of a flat plate synthetic turbulence generator. A compressed Schwarz periodic minimal surface.
Applications: additive manufacturing, soft robotics

In preparation: J. Brown, V. Barra, N. Beams, L. Ghaffari, M. Knepley, W.
Moses, R. Shakeri, K. Stengel, J. Thompson, J. Zhang, Performance-Portable
Solid Mechanics via Matrix-Free p-Multigrid, in preparation for SC 23
ArXiv: arXiv:2204.01722v3
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About CliMA
The Climate Modeling Alliance (CliMA) is a coalition of scientists, engineers, and applied

mathematicians from Caltech, MIT, and the NASA Jet Propulsion Laboratory. We are building the
first Earth System Model (ESM) in the Julia programming language that automatically learns from
diverse data sources to produce more accurate climate predictions with quantified uncertainties.
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Goals

[Source: courtesy of Tapio Schneider (Caltech)]

The Earth System Model (ESM) will be grounded in
physics (using sub-grid scale, cloud-resolving modeling)
and designed for automated calibration of parameters
using machine learning.
High-resolution Large-Eddy Simulations (LES) are used
to inform parametrizations of the global circulation
model (GCM), which in turn, can be used for
large-scale forcings to force the LES.

[Source: Physics Today - June 2021, pg. 44-51]
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Technical and Scientific Aims
Support CPUs and GPUs using a common open-source code base
written in the high-level, dynamic Julia programming language
(familiar syntax, similar to Python and Matlab).
Julia has an interactive REPL, is Just-In-Time (JIT) compiled
(triggered by first evaluation of function). Allows polymorphism
via multiple dispatch (at compile or run time).
Can write generic code, compiler will specialize on types of calling
arguments, e.g., f(x::AbstractArray) where AbstractArray can
be Array of Float32, Float64 or a CuArray.
Be accessible and extensible by a mixture of users.

For the atmosphere model, support both Large-Eddy Simulation (LES) and General Circulation Model
(GCM) configurations (i.e., Cartesian and spherical geometries).
Allow specification of any governing equations and boundary conditions by composing operators.
Support non-uniform unstructured meshes.
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ClimateMachine.jl: a first codebase
Supports only Discontinuous Galerkin (DG) discretization. Same in each direction (horizontal/vertical)
but allows different polynomial order. No staggered grids supported
Can prescribe PDEs only in conservation form ∂tQ +∇ · F(Q) = S(Q)
Operator volume/face kernels written in KernelAbstractions.jl (a unified programming model, similar to
OpenCL/SYCL, which allows for single-source code for CPUs & GPUs, but primarily “a GPU code which
runs on CPUs”)
Overlaps computation & communication: distributed via MPI.jl.
Efficient, but somewhat inflexible

A. Sridhar et al., Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and
CPUs, Geoscientific Model Development, 15, 6259–6284 (2022)

A. Souza, J. He, T. Bischoff, M. Waruszewski, L. Novak, V. Barra, T. Gibson, A. Sridhar et al., The Flux-Differencing Discontinuous
Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere, in review for JAMES
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ClimaCore.jl

ClimaCore.jl

ClimaCore.jl — a new dynamical core (dycore).

A library (suite of tools) for constructing flexible space
discretizations.

Geometry:
Supports different geometries (Cartesian & spherical).
Supports covariant/contravariant vector representation
for curvilinear, non-orthogonal systems and Cartesian
vectors for Euclidean spaces.

Space Discretizations:
Horizontal: Support both Continuous Galerkin (CG)
and Discontinuous Galerkin (DG).
Vertical: staggered Finite Differences (FD).

Valeria Barra, Ph.D. (Caltech) 28 / 45

https://github.com/CliMA/ClimaCore.jl


ClimaCore.jl

ClimaCore.jl: API
API objects:

Domain, Mesh, Topology, Space, Field.
Field abstraction:

Scalar, Vector or Struct-valued.
Stores values, geometry, and mesh info.
Flexible memory layouts.
Useful overloads: sum (integral), norm, mean.
Compatible with DifferentialEquations.jl time integrators.
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ClimaCore.jl

ClimaCore.jl: API (cont’ed)

Flexible data layout:

Support for different memory layouts: Array-of-Structs (AoS), Struct-of-Arrays (SoA),
Array-of-Struct-of-Arrays (AoSoA).
Common interface: slab for extracting 2D horizontal field slices; column for 1D vertically-aligned
nodes.
Add element node size dimensions to type domain (i.e., specialize on polynomial degree, useful
for loop unrolling; important for kernel performance).
Flexible memory layouts allow for flexible threading models:

CPU thread over elements.
GPU thread over nodes/node columns (ongoing).
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ClimaCore.jl

ClimaCore.jl: API (cont’ed)

ClimaCore.jl’s composable Operators and Julia broadcasting:

Julia broadcasting:
apply a vectorized function point-wise to an array. Scalar values
are “broadcast” over arrays; Fusion of multiple operations.
User-extensible API: can be specialized for custom functions or
argument types (e.g., CuArray compiles and applies a custom
CUDA kernel).

Operators (grad, div, interpolate) are “pseudo-functions”: act like
functions when broadcasted over a Field, but can’t be called on a single
value; can be composed and fused w/ function calls. Matrix-free, i.e., no
assembly; specify action of operator.
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ClimaCore.jl

Some personal contributions

I have worked in adding support for
Different “cubed-sphere” meshes
(Equiangular, Equidistant, Conformal)
High-order differential operators and flux
limiters
Unit tests, integration tests and examples
Docs, tutorials, CliMAWorkshops
(https://github.com/CliMA/ClimaWorkshops)
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Examples for Climate Applications

Examples: Shallow-water equations
The shallow water equations
(in vector-invariant form):

∂h
∂t +∇ · (hu) = 0 (3a)

∂u
∂t +∇(Φ + 1

2‖u‖
2) = (u × (f +∇× u)) (3b)

where f is the Coriolis term and Φ = g(h + hs).

Written in terms of a curvilinear,
non-orthogonal basis:

∂h
∂t + 1

J
∂

∂ξj

(
hJuj

)
= 0 (4a)

∂ui
∂t + ∂

∂ξi
(Φ + 1

2‖u‖
2) = Eijkuj(f k + ωk) (4b)
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Examples for Climate Applications

Shallow-water equation Test Cases
ClimaCore.jl/examples/sphere/shallow_water.jl

Shallow-water equations suite, Test Case 5 [Williamson1992].
Zonal flow over an isolated mountain.

Shallow-water equations suite, barotropic instability test case
[Galewsky2004]. Zonal jet with compact support at mid-latitude. A small
height disturbance is then added, which causes the jet to become unstable

and collapse into a highly vortical structure.
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Examples for Climate Applications

Examples: Advection (transport) problems

∂ρ

∂t = −∇ · ρu, (5a)

∂Q
∂t = −∇ · Qu, (5b)

Transport of a passive tracer, with Q = ρq, where q denotes tracer concentration (i.e., mixing ratio or mass of
tracer per mass of dry air, in dry problems, or mass of tracer per mass of moist air, in moist problems) per unit

mass, and ρ fluid density.
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Examples for Climate Applications

Quasimonotone flux limiters
Traditional SEM advection operator is oscillatory but due to its mimetic properties it is
locally conservative and has a monotone property with respect to element averages

We use a class of optimization-based locally conservative quasimonotone (monotone with
respect to the spectral element nodal values) limiters that prevent all overshoots and
undershoots at the element level [GubaOpt2014]

It also maintains quasimonotonicity even with the addition of a dissipation term such as
viscosity or hyperviscosity

This involves solving a constrained optimization problem (a weighted least square
problem) that is local to each element. That is, we need to solve a standard quadratic
program (QP). We have to minimize a quadratic objective function subject to linear
constraints

The only additional interelement communication introduced is in determining the suitable
minimum and maximum constraints
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Examples for Climate Applications

Flux limiter test case: slotted cylinders on a 2D sphere

p = 6, ne = 20× 20× 6 (effective resolution 0.75◦ at equator.)

No limiter. With limiter.
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Examples for Climate Applications

Flux-Corrected Transport
Flux-corrected transport (FCT) was proposed by Boris and Book (1973) [BorisBook1973] as a way of
approximating a conservation law with a high-order scheme in regions where the solution is smooth
while using a low-order monotone scheme where the solution is poorly resolved or discontinuous.
The concept of FCT and the algorithms for its implementation were generalized by Zalesak (1979)

[Zalesak1979].

Dissipative and very dispersive Less dissipative and less dispersive
(but over/under-shoots) No over/under-shoots and limited dispersion.
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Examples for Climate Applications

Performance/optimization efforts
Three current streams of work to reduce time-to-solution:

1. Mathematical/numerical:
Use SSP HEVI/IMEX time integrators to overcome stringent CFL condition,
otherwise exacerbated by elements aspect ratio ∼ 1 : 104

2. Julia Optimizations:
Disable bounds checking to facilitate vectorized (SIMD) instructions via @inbounds
Ensure type stability using tools, e.g., JET.jl that allows to do static type checking
Eliminate dynamic memory allocations

3. Profiling:
Our group developed the NVTX.jl package for instrumenting the code for use with
Nvidia Nsight profiler, which supports profiling MPI-enabled code. The profiling is
included in our automated scaling tests, uploaded after each run (performance CI)
Other Julia profiling tools: @time, –track-allocation
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Examples for Climate Applications

Parallelization

ClimaComms.jl wrapper library that supports
generic distributed and shared computing
paradigms. Currently using MPI.jl and
CUDA.jl in the backend for Distributed
Topology on CPUs and GPUs.
I/O: NetCDF and parallel HDF5 support.
Different threading across blocks/iteration
patterns

Preliminary scaling results.
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Conclusions

ClimaCore.jl is the new open-source dycore for the
atmosphere and land components of the CliMA’s
proposed Earth System Model (ESM), entirely
written in the Julia dynamic language
We introduced ClimaCore.jl’s API for flexible
discretizations and high-performance composable
solvers
We showed examples of applications for
atmospheric flows and flux limiters to overcome
oscillation challenges for the high-order SEM
advection operator

[Held-Suarez 180-day simulation.]

[AMIP (w/o EDMF and topography) simulation.]
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Outlook and future directions
Future work:

Explore other stabilization methods for hyperbolic
problems

In particular, Streamline-Upwind
Petrov-Galerkin (SUPG) methods for
numerical weather and climate simulations
Why are these important: These methods
ensure correct energy behavior, conservation
and stability (other classical stabilized
formulations can create undesired artificial
energy)
Collaboration with Ken Jansen, CU Boulder,
creator of the Parallel-Hierarchic-Adaptive-
Stabilized-Transient-Analysis
(PHASTA)

[Source: https://phasta.scigap.org/]
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Outlook and future directions (cont’d)

More future work:
Use of multigrid strategies for fluid
problems where it can be beneficial:

Extend collaboration with Jed
Brown, CU Boulder – our work
showed efficiency and scalability of
matrix-free p-multigrid methods with
algebraic multigrid coarse solvers
through large deformation
hyperelastic simulations of solids
Use this in fluid problems with
transition from turbulent to viscous
regions

DNS of a flat plate synthetic turbulence generator.

Valeria Barra, Ph.D. (Caltech) 44 / 45



Mentoring and Engagement
Mentoring experience (GSMM Camp)

Continue efforts in Diversity, Equity,
Inclusion and Belonging

Advocacy for (invisible/visible) disabilities
in STEM, women in STEM, international
students and scholars, upward mobility,
systemic exclusion of underrepresented
groups

Active in industrial workshops (MPI)

Students success and professional
development: professional associations,
e.g., US-RSE, WHPC, SIAM, etc

Thank you!
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