
Design and Interfaces for CliMA’s Next-Generation
Performance-Portable Earth System Model

Valeria Barra, Ph.D.
Assistant Professor, San Diego State University

valeriabarra.org
Co-authors: Simon Byrne, Akshay Sridhar, Shriharsha Kandala, Lenka Novak, Julia Sloan, Dennis
Yatunin, Charles Kawczynski, Gabriele Bozzola, Tapio Schneider (PI), and the entire CliMA team

June 5th, 2024

https://valeriabarra.org/


Introduction

Overview

1 CliMA’s overview
Introduction

2 ClimaCore.jl
ClimaCore API
Examples

3 ClimaCoupler.jl
Coupler Overview
Hierarchies

4 Conclusions

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 1 / 18



Introduction

About CliMA
The Climate Modeling Alliance (CliMA) is a coalition of scientists, engineers, and applied

mathematicians from Caltech, MIT, and the NASA Jet Propulsion Laboratory, building the first
Earth System Model (ESM) in the Julia programming language that automatically learns from diverse

data sources to produce more accurate climate predictions with quantified uncertainties.

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 2 / 18



Introduction

Goals

[Source: courtesy of Tapio Schneider (Caltech)]

The Earth System Model (ESM) will be grounded in
physics (using sub-grid scale, cloud-resolving modeling)
and designed for automated calibration of parameters
using machine learning.
High-resolution Large-Eddy Simulations (LES) are used
to inform parametrizations of the global circulation
model (GCM), which in turn, can be used for
large-scale forcings to force the LES.

[Source: Physics Today - June 2021, pg. 44-51]
Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 3 / 18



Introduction

Technical and Scientific Aims
Support CPUs and GPUs using a common open-source
(single-source) code base written in the high-level, dynamic Julia
programming language (familiar syntax, similar to Python and
Matlab).
Julia has an interactive REPL, is Just-In-Time (JIT) compiled
(triggered by first evaluation of function). Allows polymorphism
via multiple dispatch (at compile or run time).
Can write generic code, compiler will specialize on types of calling
arguments, e.g., f(x::AbstractArray) where AbstractArray can
be Array of Float32, Float64 or a CuArray.
Be accessible and extensible by a mixture of users.

For the atmosphere model, support both Large-Eddy Simulation (LES) and General Circulation Model
(GCM) configurations (i.e., Cartesian and spherical geometries).
Allow specification of any governing equations and boundary conditions by composing operators.
Support uniform/non-uniform structured and unstructured meshes.

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 4 / 18



Introduction

Why Julia?
User-friendliness
Package management
Debuggability
Performance portability
Reproducibility!

Use the Julia ecosystem:

Documentation: Documenter.jl
Unit testing: julia> include(“test/runtests.jl”)
Data structures and Optimizations
Profiling (e.g, @time)
Plotting
I/O (NetCDF, HDF5)

Duality: can be used in instructional (Jupyter Notebooks) or operational settings
Attracts young talent

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 5 / 18



ClimaCore API

ClimaCore.jl

ClimaCore.jl — a new dynamical core (dycore).

A library (suite of tools) for constructing flexible space discretizations.
Geometry:

Supports different geometries (Cartesian & spherical).
Supports covariant/contravariant vector representation for
curvilinear, non-orthogonal systems and Cartesian vectors for
Euclidean spaces.

Space Discretizations:
Horizontal: Supports both Continuous Galerkin (CG) and
Discontinuous Galerkin (DG).
Vertical: staggered or unstaggered Finite Differences (FD).

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 6 / 18

https://github.com/CliMA/ClimaCore.jl


ClimaCore API

ClimaCore.jl: API

ClimaCore.jl’s composable Operators and Julia broadcasting:

Julia broadcasting:
apply a vectorized function point-wise to an array. Scalar values
are “broadcast” over arrays; Fusion of multiple operations.
User-extensible API: can be specialized for custom functions or
argument types (e.g., CuArray compiles and applies a custom
CUDA kernel).

Operators (grad, div, interpolate) are “pseudo-functions”: act like
functions when broadcasted over a Field, but can’t be called on a single
value; can be composed and fused w/ function calls. Matrix-free, i.e., no
assembly; specify action of operator.

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 7 / 18



ClimaCore API

Performance/optimization

1. Julia Optimizations:

Disable bounds checking to facilitate vectorized (SIMD) instructions via @inbounds
Ensure type stability using tools, e.g., JET.jl that allows to do static type checking
Profiling to eliminate dynamic memory allocations

2. Fused CUDA kernels:

MultiBroadcastFusion.jl: allows users to fuse multiple broadcast expressions into a
single CUDA kernel launch via the annotation @fused_direct

3. I/O:

NetCDF and parallel HDF5 support

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 8 / 18

https://github.com/aviatesk/JET.jl


Examples

Examples: Shallow-water equations
The shallow water equations
(in vector-invariant form):

∂h
∂t + ∇ · (hu) = 0 (1a)

∂u
∂t + ∇(Φ + 1

2 ∥u∥2) = (u × (f + ∇ × u)) (1b)

where f is the Coriolis term and Φ = g(h + hs).

Written in terms of a curvilinear,
non-orthogonal basis:

∂h
∂t + 1

J
∂

∂ξj

(
hJuj

)
= 0 (2a)

∂ui

∂t + ∂

∂ξi (Φ + 1
2 ∥u∥2) = Eijkuj(f k + ωk) (2b)

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 9 / 18



Coupler Overview

ESM

[Source: ClimaCoupler.jl docs]

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 10 / 18



Coupler Overview

ClimaCoupler.jl in the CliMA ESM ecosystem

[Source: courtesy of Lenka Novak (CliMA, Caltech)]

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 11 / 18



Coupler Overview

Role 1: Exchange quantities between components

[Source: courtesy of Julia Sloan (CliMA, Caltech)]

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 12 / 18



Coupler Overview

Role 2: Regridding/Remapping and Time-stepping

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 13 / 18



Hierarchies

Role 3: Allowing different hierarchies

[Source: courtesy of Julia Sloan (CliMA, Caltech)]

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 14 / 18



Hierarchies

Process-based Hierarchy: e.g., Geometry Hierarchies

Held-Suarez 180-days simulation.

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 15 / 18



Hierarchies

Generality-based Hierarchy: Model Hierarchies

AMIP (with diagnostic EDMF and topography)
simulation—total bias.

Preliminary AMIP (w/o EDMF and topography)
simulation—temperature.

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 16 / 18



Conclusions and Outlook

We have introduced ClimaCore.jl (the dycore for atmos and land components)
and ClimaCoupler.jl, part of the CliMA’s ESM ecosystem
We have showed their flexible and user-friendly APIs, allowing for
high-performance composable solvers and different complexities/hierarchies
Current preliminary performance:

For atmospheric component alone: 1 SYPD for helem=30, Nq=4, zelem=63 (64
faces), 64 MPI processes, and 1 A100 GPUs
For Coupler setup: 1 SYPD for helem=30, Nq=4, zelem=63 (64 faces),
coupled_dt=2min, 64 MPI processeses, and 4 A100 GPUs

Outlook:
Improve prognostic EDMF and atmospheric chemistry for more realistic atmosphere
component
Include full 3D land component
Calibrate

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 17 / 18



Acknowledgements

Many thanks to all ClimaCore.jl’s and ClimaCoupler.jl users and contributors.
In particular, for the latest CliMA dycore efforts a special mention goes to:

Tapio Schneider1 (PI), Paul Ullrich2, Oswald Knoth3, Simon Byrne1, Jake Bolewski1, Charles
Kawczynski1, Sriharsha Kandala1, Zhaoyi Shen1, Jia He1, Kiran Pamnany1, Ben Mackay1, Akshay
Sridhar1, Dennis Yatunin1, Lenka Novak1, Toby Bischoff1, Daniel (Zhengyu)Huang1, Andre
Souza4, Yair Cohen1

1: Caltech, 2: UC Davis, 3: TROPOS, 4: MIT

Our funders:

Valeria Barra, Ph.D. (SDSU) June 5th, PASC24 @ ETH Zurich 18 / 18


	CliMA's overview
	Introduction

	ClimaCore.jl
	ClimaCore API
	Examples

	ClimaCoupler.jl
	Coupler Overview
	Hierarchies

	Conclusions

